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A Caldeira-Leggett-type system-bath Hamiltonian is used to construct a new class of local stochastic
equations on a lattice and to determine the conditions under which the lattice field evolves to thermal
equilibrium. Both scalar and two-dimensional vector fields driven by multiplicative noise are con-
sidered. The latter model is developed to describe magnetization dynamics with spatial dispersion of re-
laxation. A systematic method of constructing stochastic field equations from a complex dispersion rela-
tion is proposed. The corresponding lattice Fokker-Planck equation is written down and it is shown that

thermal equilibrium is its stationary state.
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Nondissipative dynamics of magnetization are de-
scribed by the equation dM/dt =y MX(—8H /6M),
where ¥ is the gyromagnetic ratio and H is the total free
energy. It is a function of the magnetization components
M; (homogeneous rotation of the vector M) and the spa-
tial derivatives OM,/0x; (exchange interactions). The
equation is well known for its soliton solutions [1]
representing domain walls; the question is how to intro-
duce into it dissipative forces. In 1955 Gilbert [2] gen-
eralized it as dM/dt=y,MX(—8H /8M—¢€,dM/dt),
where €, is a dissipative constant associated with homo-
geneous rotation (rotation in unison). The equation con-
serves |[M| and has been used to study both coherent ro-
tation in single domain particles {2,3] and dynamics of
domain walls [1,4]. In 1984, however, Bar’yakhtar [5]
pointed out that the dissipation constant deduced experi-
mentally from domain-wall drag is much larger than the
one deduced from ferromagnetic resonance. He conclud-
ed that there must exist at least one more dissipative term
in the phenomenological equation of motion and that this
term must be associated with propagation of spatial inho-
mogeneities. To find this term Bar’yakhtar had to as-
sume that the total magnetic moment of the sample,
M= f dV M, is conserved rather than the local mag-
netic moment density |M(¢,r)|, and much of the subse-
quent work [6] was then devoted to showing that the non-
conservation of [M| is small.

The motivation of this article is the need to derive a
stochastic equation of motion which takes into account
both nondispersive (spatially homogeneous) and disper-
sive effects of dissipation, conserves M| locally, and, at
the same time, evolves towards thermal equilibrium. Our
starting point is a system-bath Hamiltonian which fol-
lows closely (but in real time) the celebrated model of
Caldeira and Leggett [7]. The method is eminently well
suited to the derivation of stochastic equations of motion
together with the associated fluctuation-dissipation (FD)
theorems and has been used previously [3] to derive a sto-
chastic generalization of Gilbert’s equation for rotation
in unison with damping of specific point symmetry. In
this instance it was found that in systems driven by multi-
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plicative vector noise coupled to both generalized posi-
tion and momentum the FD theorem is a necessary, but
not sufficient, condition for the existence of thermal equi-
librium.

Here we develop a stochastic theory on lattice, derive a
Fokker-Planck equation for a countable number of de-
grees of freedom, and write down the final results in con-
tinuum limit. Because of the complications associated
with vector field theory we consider first the scalar case
and derive a class of stochastic field equations with addi-
tive and multiplicative scalar noise field. Such equations
may be used to describe, e.g., a damped Josephson junc-
tion [8]. The more complicated magnetization dynamics
driven by a multiplicative vector noise are treated next:
Rotation of the vector M has two degrees of freedom and
a stochastic description of the two-dimensional field
M(t,r) over a three-dimensional space is required if spa-
tial dispersion of magnetization is to be taken into ac-
count also. Only an approximate Fokker-Planck equa-
tion valid in the underdamped limit can be written down
in this case.

The dissipative coupling of a Josephson junction to a
heat bath was described by Caldeira and Leggett [7] via
the bilinear interaction Hamiltonian H; ;=3 ,c,9,9,
where Q is a junction variable coupled to a linear super-
position of the bath variables g,. We generalize this to a
form invariant under both space and time inversion:

Hy =3 [cy(r)g,+d (1)(Vg,)-VIQ . (1)
Here r is spatial coordinate and V=02/0r. We further in-

troduce a lattice with lattice constant @ and write (in one
spatial dimension for brevity) at the point » =ia

%§=(2a)_‘[§[a(i +1)]—¢&la (i —1)]}

=(2a) M{EG+1)—EG—1)} . )

Here £ is an arbitrary functional in the bath or system
variables [e.g., £=¢,(i) or £=3/0Q (i)] and the second
equality defines abbreviated notation on the lattice; for
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the system variables we shall also write Q(i)=Q;. In
these lattice variables the total system-bath Hamiltonian
including the counterterm [3,7] becomes, in one dimen-
sion,

Htmzz [P ]+ 3 {pa l)+waqa(l)} 3)
where
7o) =g+ 0z (c (DQ;+d, (i —1[Q;— Qi ]
—d (i +1D[Q;,—0Q;]} )

and d,(i)=(2a)"%d,(r)|,—;,- The pairs {Q;,P;} and
{q,(i),p,(i)} at the point r =ia are the conjugate vari-
ables of the system and the bath, respectively. Spatial in-
homogeneities within the bath arise in the Hamiltonian
(3) only via interactions with the spatially dispersive sys-
tem. It is also possible to add an elastic bath term into
H,,, eg, H,=3,e,(r)[(Vg,)*+Q%Vp,)?], and im-
pose some boundary conditions on {q,,p,}, but this
leads to a complicated nonlocal theory characterized by
spatial correlations of bath variables and dependent on
their boundary values. Our aim here is a local theory and
this venue shall not be pursued further.

Derivation of stochastic equations of motion from Egs.
(3) and (4) follows a standard procedure [3]: The solution
of the inhomogeneous linear Hamilton’s equations
Go(1)=0H  /0p (i), p,(i)=—0H,, /9q,(i) is substitut-
ed into the equations Q;=dH,, /0P;, P;=—0dH, /3Q;
and the dissipative kernel 7(z) is constructed [3,7] from
the coupling coefficients c,(i), d,(i). The noise term then
originates from the homogeneous solution of the bath
equations. Let it be designated b(¢,i). The construction
guarantees that after averaging over initial states of the
bath the relation L(b(t,i)b(t',j))=T7’/‘(z)8i,j holds, .L
being a Laplace transform operator and T temperature.
This is a necessary [but not always sufficient; see the dis-
cussion of Egs. (19) and (20) below] condition for the ex-
istence of thermal equilibrium. In the Markovian limit
the noise b (¢,i) becomes the Wiener process w(t,i) and
the resultant stochastic equations of motion can symboli-
cally be written as

b= —Hy,—A2,0—2T)'?A, 0 , (5)
Q=Hp, (6)

where Hy, =8H /8Q —0H /30Q; =

tion for P;, etc.
operator

A, ,=e—=V-(nV), @)

H,, in the lattice equa-
We introduced here the dissipation

in which € and 7 are in general functions of r and the ac-
tion of V on the lattice is defined by Eq. (2). Generaliza-
tion to system with memory is trivial. In Egs. (5) and (6)
the operator A, formally represents a dissipation con-
stant. Their noiseless part is well defined also in the con-
tinuum limit while the noise term makes sense only in
terms of lattice differences since the Wiener processes on
neighboring nodes are uncorrelated by assumption:

A, W= (e+277)w —j(W; 4, +w; _,) for position indepen-
dent € and n=4a%7. For the quadratic Hamiltonian den-
sity A =1[P2+Q?Q%+E%VQ)?] the noiseless equations
(5) and (6) have a running wave solution with the complex
dispersion relation

_(w _w2)1/2
where 0?=Q*+E%2, w,=(e+nk?)?/2 and k =|k|. As
expected, waves with large k vector are attenuated pref-
erentially.

Given the set (5) and (6) it is possible to find [9] the
(Stratonovich) Fokker-Planck operator L for the joint
probability distribution W({Q;,P;}) on the lattice.
Thereis OW /3t =LW,L =3, L;, and L; is given by

—iw, , (8)

d 9
3 ., aw
TTop |Aevap, ©)

The discrete version of L; is rather unwieldy, e.g., the
drift term for constant € and 7 becomes

9;A2 9, = (€ +47e+ 67737,
_2(776+277 X 11-2+alz,i+2)
~2(azzt~4+aii+4) )

where 9;=0/9P; and 82- 82/8P dP; for brevity. It is
an easy exercise to show that Le™ T’—O so that thermal
equilibrium exists and is the stationary state of the lattice
Fokker-Planck equation. Moreover, the structure of Egs.
(5), (6), and (9) suggests that this property holds for an ar-
bitrary dissipation operator A, (V)=A_ (—V) (this
condition precludes the introduction of an ‘arrow of
space” akin to the “arrow of time”) which can accommo-
date an arbitrary complex dispersion relation (k).
Thus, for example, preferential attenuation of waves with
small k vector is obtained if A, —A_,;’* while obviously
this term cannot be derived from any finite interaction
Hamiltonian of the form (1). Analogous situation obtains
also for multiplicative scalar noise provided that it cou-
ples to but one of the system variables. Let, e.g.,
Q —x(Q) in the interaction Hamiltonian H;,, of Eq. (1).
The stochastic equations of motion (5) and (6) are re-
placed in this case by the set

P=—Hy—xo{A,[xoQ1+02D'" A 0}, (10

Q=H, , (11)

and the Fokker-Planck operator L; becomes
LW=—=2(WH, } +

30, {(W[Hg +xo (Il;H)]

9
+Txo (W)} . (12)

The generalized dissipation operator II; contains also in-

formation about the multiplicative action of the noise
field:
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d
Hi:AE’ﬂXQ,-—a?i . (13)
Note that Eq. (10) without noise can be written in the
compact form P=—H,—xoIlH, xo=38x/3Q, which is
well defined also in the continuum limit. Both the func-
tion x(Q) and the operator A2 , may be chosen at will. It
is therefore possible to construct a stochastic lattice field
theory which goes over to thermal equilibrium given the
dispersion relation w(k) and the function y. The deter-
ministic damped equations of motion are then defined
also in the continuum limit. This construction consti-
tutes our main result, its further developments and limi-
tations are considered below.

The stochastic equation studied so far were explicitly
solved for the pairs {Q;,P;} and it was easy to write for
them a Fokker-Planck equation and to verify that
Le “#/T=0. Complications arise, though, if the multipli-
cative function Y — x(Q, P) in Eq. (1) since in this case the
equations of motion become

P=—H,—xo[AZ x+Q2T)*A, ,w],

Q=Hp+xp[AZ x+2D'?A_ 0],

(14)
(15)

where ¥ =xpP +)(QQ The linear system for {Q;,P;} is
trivially solved if A_, =e. This corresponds to two de-

grees of freedom and the discriminant of the system turns
J
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out to be unity. In any other case the system (14),(15) is
either infinite or boundary conditions must be assigned
on the lattice. Multiplicative noise of this type arises nat-
urally in magnetization studies and we defer an analysis
of this problem to the discussion of Egs. (19) and (20)
below.

In order to apply the Hamiltonian formalism to mag-
netization we first need to parametrize [3] the three com-
ponents M; [|M(t,r)| is conserved and has no spatial
dispersion by assumption] in terms of the canonical vari-
ables (¢, P):

M=y,S

=yo((PE—P?)V2cosp, (P —P?)*sing, P) . (16)
M is the magnetic moment residing in some volume v
(e.g., a unit cell) with M =vM and S is the corresponding
angular momentum. By assumption |S|=P, is indepen-
dent of time and position. It has been shown previously
[3] that bilinear coupling of the vector S to a bath con-
strued as an electromagnetic field, H;, =3 ,c.(S:B,),
leads to Gilbert’s equation of motion discussed in intro-
duction. The magnetic-field vector B, is expressed in
terms of the normal field modes (q,,p,) and in the spirit
of Eq. (1) we formally generalize this interaction Hamil-

tonian as

> |98 8B,  3s 9B, as 3B,
Hy=3 [c (S-By)+d, | 2= o v (a7
& e “lox ox 9y 9y oz Oz
I
The form of H;, determines the operator A., and for w,=Kw,. The quantity K =P,(e+nk?)? represents an

our purposes any H;,, with correct symmetry will do; see
Egs. (13) and (22). In the Markovian limit we obtain the
stochastic equation for S by calculating 3H,,, /0S,

S, =SX[—Hg—A.,S,—QT)'"*A, ,w,] . (18)

A, is given in this special case by Eq. (7), further
Hg=0H /088, S,=dS/dt, etc. This equation conserves
local magnetization |M(¢,r)| and is distinguished by the
presence of terms proportional to €7 (i.e., mixing homo-
geneous and inhomogeneous dissipation) absent in
Bar’yakhtar’s equation [4-6].

There remains yet to establish a Fokker-Planck equa-
tion for magnetization distribution and to show that
thermal equilibrium is its stationary state. To this end we
write down the stochastic equations of motion in terms of
(¢, P) symbolically as

$=Hp+8,-[A2,S,+(21)'?A, ,w,], (19)
P=—H,—S,[AlS, +(2T)1/2A Wil (20)

where Sp— 938, /0P;, etc., and S, =SPP+S¢<}5. For the
Hamiltonian density

A=E(p*+¢*) /2+B[(Vp)*+(V$)?]/2 ,

with p =P /Py, there follows a dlspersxon relation of the
form (8) where =Py 2(E +Bk*)*(1+K?)~! and

effective dissipation constant. For large k both w, and w,
go to zero. This is a peculiarity of Gilbert’s equation in
which an overdamped system behaves like an under-
damped system with a very large inertia [2]. The under-
damped limit condition K << is satisfied for small k only
and it is only in this limit that we could treat the above
stochastic system consistently.

The linear systems (14),(15) and (19),(20) have similar
structure and cannot, in general, be solved for the conju-
gate variables pair. The problem, however, is not merely
one of a large number of linear equations or of boundary
conditions: It was shown [3] that stochastic systems of
this form go to thermal equilibrium if and only if the
discriminant D (¢, P) of the linear system is independent
of the canonical variables, that is, if D(¢,P)=0 on the
whole phase space. This condition must be satisfied in
addition to the usual FD theorem. There is no guarantee
therefore that the system (19),(20) evolves to thermal
equilibrium, in fact, a three-site calculation with periodic
boundary conditions suggests that it does not. This sim-
ple result constitutes by no means a proof but it seems
highly unlikely that a consistent stochastic theory of the
form (18) or (19),(20) exists at all. Violations of the
discriminant condition may, however, be neglected in the
first order of a small dissipation constant [3]. We iterate
Egs. (19) and (20) by letting S, =HpS;— H Sp and for the
underdamped system obtain a (Stratonovich) Fokker-
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Planck equation of the form W /0t = 3,; L; W, where

Lw=—"lwl|o,+ 95, (IL,H) r25i (I, W)
Y'Y P ap, ap, '
+ 2 dwla, + B |+ w
oP; ¢ 9¢; ! 9¢; ‘ ’
1)

The operator II; is in this case defined as

— A2
I, =A,,

i

39, oP, 9P, 04, ] ! =
and Le #/T=0 as desired. The underdamped noiseless
equations (19) and (20) have again the compact form
é=Hp+(Sp-TI)H and P=—H ;—(S,-I1)H and are well
defined in the continuum limit. For A n—€ these equa-
tions become the underdamped Gilbert’s equation [2,3].

The multiplicative noise driving the system (18) deter-
mines the phase-space action of the dissipative operator
IT but, as in Eq. (13), the operator Ae,,7 may be chosen at
will. Therefore, given a small k dispersion relation for
spin waves (large wave vectors are excluded a priori in
this underdamped limit, K <<1), one can construct a
suitable operator A , from the linearized (noiseless) equa-
tions (19) and (20). Obviously, dissipative couplings of
more complex symmetry [3] than H;, of Eq. (17) may be
considered; they redefine the phase-space action of the

operator II similar to the choice of x in Eq. (13).

To summarize, the stationary state of the Fokker-
Planck equation corresponding to a scalar field driven ei-
ther by additive noise or by multiplicative noise coupled
to but one canonical variable is thermal equilibrium.
Within the framework of stochastic equations the dissipa-
tive coupling may be arbitrary. In stochastic theory of
scalar or vector fields driven by more complicated multi-
plicative noise thermal equilibrium exists in general in the
underdamped limit only. We next treat dissipative dy-
namics of magnetization (two-dimensional field driven by
multiplicative noise), propose an alternative equation of
motion and show that it evolves to thermal equilibrium in
the underdamped limit. A possible deterministic form is

aM _ _8H i
ar 7MY e Tl

V2)2 dM

(23)
since the dissipation operator (7) yields a quadratic
dispersion relation for spin waves, as it should. However,
this is obviously not the only possible choice and the rela-
tion between the dissipation operator A, and domain-

wall dynamics (see, e.g., Refs. [4,10]) is the subject of
current research.
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